
1

23-Jan-26—9:21 AM

University of Florida, EEL 4744 – File 08
© Drs. Schwartz & Arroyo

Data Structures, Program Structures

EEL 4744

1
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

Today’s Menu

• Program File Structure
• Data Structures
• Program Structures

>Sequence, Selection, Repetition
• Transition from a “main” program to a “subroutine”
• Subroutine to add vectors

Today’s Class ...

See examples on web:
Stack1.asm, VectAdd.asm,

doc8331, doc0856

EEL 4744

2
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

Data Structures

• Bit Fields
• Floating Point
• Sequential List
• Matrix
• Linked List
• Stack
• Queue

1

2

2

23-Jan-26—9:21 AM

University of Florida, EEL 4744 – File 08
© Drs. Schwartz & Arroyo

Data Structures, Program Structures

EEL 4744

3
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

Data Structures: Bit Fields &
Floating Point

7 6 5 4 3 2 1 0
F3 F2 F1

31 24 23 0

0 0 B 0 0 0 0 0

8-bit Exponent 24-bit Mantissa

EEL 4744

4
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

Data Structures: Sequential List
• A sequential list of data is a collection of data mapped into

successive locations in storage, starting at some initial
location called the base address. The order of the elements
may or may not have a particular significance.

Time Experimental Data Location
1 17 122

2 6 123

3 23 124

4 13 125

5 9 126

Contents
17
6
23
13
9

Internal
Format

Memory

Also called a
TABLE

3

4

3

23-Jan-26—9:21 AM

University of Florida, EEL 4744 – File 08
© Drs. Schwartz & Arroyo

Data Structures, Program Structures

EEL 4744

5
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

Data Structures: Matrix

Location
322

323

324

325

Contents

4

2

1

3

A =
4 2

1 3
A

Memory

A is an m row by n column matrix
aij = element in row i column j
Location of aij = A+(i-1)*n+(j-1)

EEL 4744

6
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

Data Structures: Linked List

NAME POINTER

TITLE POINTER

SALARY NULL

* Before Insertion

Memory

Sue

3E

79

0

PROF

3B

37
38
39
3A
3B
3C
3D
3E
3F
40
41
42

NAME: ASCII

Pointer: TITLE
SALARY: BCD

NULL: 0 (EOL)
TITLE: ASCII

Pointer: SALARY

5

6

4

23-Jan-26—9:21 AM

University of Florida, EEL 4744 – File 08
© Drs. Schwartz & Arroyo

Data Structures, Program Structures

EEL 4744

7
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

Data Structures: Linked List
Memory

NAME POINTER

DEGREE POINTER

* After Insertion Sue

43

79

0

PROF

3B

37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46

NAME: ASCII

Pointer: DEGREE
SALARY: BCD

NULL: 0 (EOL)
TITLE: ASCII

Pointer: SALARY
DEGREE: ASCII

Pointer: TITLE

TITLE POINTER

SALARY NULL

PhD

3E

EEL 4744

8
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

Data Structures: Stack
(XMEGA Format)

XXX

ITEM 5

ITEM 4

ITEM 3

ITEM 2

ITEM 1

* After pushing a 5th item
Memory

Location
2FFA

TOP 2FFB

2FFC

2FFD

2FFE

BASE 2FFF

2FFA
SP

2FFB

TOP 2FFC

2FFD

2FFE

BASE 2FFF

XXX

ITEM 4

ITEM 3

ITEM 2

ITEM 1

* Before pushing a 5th item
MemoryLocation

2FFB
SP

7

8

5

23-Jan-26—9:21 AM

University of Florida, EEL 4744 – File 08
© Drs. Schwartz & Arroyo

Data Structures, Program Structures

EEL 4744

9
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

Data Structures: Stack
(6812 Format)

121

TOP 122

123

124

BASE 125

XXX

ITEM 4

ITEM 3

ITEM 2

ITEM 1

122
SP

* Before pushing a 5th item
MemoryLocation

XXX

ITEM 5

ITEM 4

ITEM 3

ITEM 2

ITEM 1

* After pushing a 5th item
Memory

Location
120

TOP 121

122

123

124

BASE 125

121
SP

EEL 4744

10
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

Data Structures: Stack
(F2833x DSC Format)

ITEM 1

ITEM 2

ITEM 3

ITEM 4

XXX

* Before pushing a 5th item
Memory

Location
BASE 400

401

402

TOP 403

404 404
SP

ITEM 1

ITEM 2

ITEM 3

ITEM 4

ITEM 5

XXX

* After pushing a 5th item
Memory

Location
BASE 400

401

402

403

TOP 404

405 405
SP

9

10

6

23-Jan-26—9:21 AM

University of Florida, EEL 4744 – File 08
© Drs. Schwartz & Arroyo

Data Structures, Program Structures

EEL 4744

11
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

Stack PUSH/POP
XMEGA

• Data is pushed and popped from the stack using PUSH
(decreases SP) and POP (increases SP)

#ClocksOperationDescriptionOperandsInstruction

2STACK ← RrPush Register on StackRrPUSH

2Rd ← STACKPop Register from StackRdPOP

doc0856

EEL 4744

12
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

Stack on the XMEGA
• Stack Pointer (SP) is two 8-bit registers to form a

16-bit register
>Reference them with CPU_SPL and CPU_SPH

– SPL is at 0x0D and SPH is at 0x0E (although we never
reference them directly by address)

• SP is initialized at reset to the highest address of
the internal SRAM (0x3FFF for our chip)

>But in 4744, assume that it is UN-initialized
• SP MUST be initialized before any subroutines or

interrupts are used
• Stack grows from a higher memory addresses to a

lower memory addresses

doc8331
Section 3.8

11

12

7

23-Jan-26—9:21 AM

University of Florida, EEL 4744 – File 08
© Drs. Schwartz & Arroyo

Data Structures, Program Structures

EEL 4744

13
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

Stack Initialization on XMEGA
• The stack pointer has only 16 bits and can only

address the low 64k of data space (0 - 0xFFFF)
>After reset, SP points to address 0x3FFF, but do NOT

assume this, i.e., always initialize the stack!

Example:
.EQU STACK_ADDR = 0x3FFF

ldi r16, low(STACK_ADDR)
out CPU_SPL, r16 ;initialize low byte of stack pointer
ldi r16, high(STACK_ADDR)
out CPU_SPH, r16 ;initialize high byte of stack pointer

EEL 4744

14
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

• Do not use tricks to shorten code.
> Tricks will “byte” you later!

• Program Structures
> Sequence
> Selection (IF-THEN-ELSE)
> Repetition (FOR, WHILE, REPEAT-UNTIL)
> Main-Subroutine

Program Structures and
Structured Programming

13

14

8

23-Jan-26—9:21 AM

University of Florida, EEL 4744 – File 08
© Drs. Schwartz & Arroyo

Data Structures, Program Structures

EEL 4744

15
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

Sequence

Sequence

Instruction 1

Instruction 2

Instruction N

*
*

ldi r16, 0xF ;Instruction 1
sts PORTQ_DIR, r16

;Instruction 2
*
*
*

add XL,YL ;Instruction N
*
*

EEL 4744

16
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

XMEGA Branch Instruction
• The syntax for a branch instruction is as follows:

BRxxx Label
>Label is assembled as a 7-bit (2’s comp) signed

constant
– Values between 63 and -64

• PC calculations
>If (COND = true) PC = PC + 1+ signed 7-bit offset
>If (COND = false) PC = PC + 1
>If (COND = true) then instruction takes 2 cycles.
>If (COND = false) then instruction takes 1 cycles.

• Note that there are signed, unsigned, and simple
branch instructions (see page 19 in doc0856)

doc0856

15

16

9

23-Jan-26—9:21 AM

University of Florida, EEL 4744 – File 08
© Drs. Schwartz & Arroyo

Data Structures, Program Structures

EEL 4744

17
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

XMEGA
Branch

Signed

doc8331
Section 35

doc0856
Page 19

EEL 4744

18
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

XMEGA Conditional
Branch Summary

≥

≥

From old version of doc0856
(not in new version)

17

18

10

23-Jan-26—9:21 AM

University of Florida, EEL 4744 – File 08
© Drs. Schwartz & Arroyo

Data Structures, Program Structures

EEL 4744

19
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

IF-THEN-ELSE Selection
*
*

ldi r16, N1
ldi r17, N2
cp r16, r17 ;Condition is N1-N2=0
breq LY ;IF condition is TRUE,

* ; THEN branch to LY,
LX: {Inst. 2} ;ELSE branch to here(LX)

rjmp LZ
LY: {Inst. 1}
LZ: {Inst. 3}

*
*

C

Inst. 1 Inst. 2

IF-THEN-ELSE

ELSE

THEN

Inst. 3

EEL 4744

20
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

FOR Repetition

C

Body

Inst. N

FOR

TRUE

FALSE

Initialization
*
*

ldi r16, 101 ;Initialization (don’t change Z flag)
ori r16, 0 ; This used to change Z flag
breq LY ;The block of instructions of

LX: {BODY} ; BODY are executed
; repeatedly, starting
; with (r16) equal to 101 and
; continuing until (r16) is 0

dec r16 ;In this case, the condition is
brne LX ; r16=0
LY: {Inst. N}

*
*

19

20

11

23-Jan-26—9:21 AM

University of Florida, EEL 4744 – File 08
© Drs. Schwartz & Arroyo

Data Structures, Program Structures

EEL 4744

21
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

WHILE Repetition

C

Body

Inst. N

WHILE

FALSE

TRUE

*
ldi r16, N1

LX: cp r16, r17 ; Condition is N1-r17=0
brne LY ; The block of instructions of
{BODY} ; BODY are executed

; repeatedly, WHILE the
; condition (C) is satisfied
; N1-r17=0 must be eventually
; satisfied

rjmp LX
LY: {Inst. N}

*
*

EEL 4744

22
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

REPEAT-UNTIL Repetition

C

Body

Inst. N

REPEAT-UNTIL

FALSE

TRUE

LX: {BODY} ;The block of instructions of
; BODY are executed repeatedly
; UNTIL the condition(C) is
; satisfied.

cp r16,r17 ; Condition is r16-r17=0
breq LY
rjmp LX

LY: {Inst. N}
*
*

21

22

12

23-Jan-26—9:21 AM

University of Florida, EEL 4744 – File 08
© Drs. Schwartz & Arroyo

Data Structures, Program Structures

EEL 4744

23
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

Stack on the XMEGA

• During subroutine calls and interrupts, the return
address is automatically pushed on the stack

>The return address (for our chip) is 3 bytes [you
should try it and verify], and hence the stack pointer is
decremented/incremented by three

>The return address is popped off the stack when
returning from each of the following:

– Return from subroutines with the RET instruction
– Return from interrupts with the RETI instruction

doc8331
Section 3.8

EEL 4744

24
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

RCALL/CALL, RET/RETI,
and Stack on XMEGA

• Use CALL (or RCALL) instruction to call subroutine
• Use RET instruction to return from subroutine calls
• Use RETI instruction to return from interrupts doc0856

ClocksOperationDescriptionOperandsInstruction

3/4PC ← PC + k +1Relative Call SubroutinekRCALL

4/5PC ← kCall SubroutinekCALL

4/5PC ← STACKSubroutine ReturnNoneRET

4/5PC ← STACKInterrupt ReturnNoneRETI

23

24

13

23-Jan-26—9:21 AM

University of Florida, EEL 4744 – File 08
© Drs. Schwartz & Arroyo

Data Structures, Program Structures

EEL 4744

25
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

� A program which calls two subroutines; think about the stack

Main-Subroutine

Main Program
; Be sure to init stack

rcall SUBRA
ldi -----

rcall SUBRB
dec -----

SUBRA: add -----

ret

Subroutine A

Subroutine B
SUBRB: push r16

pop r16
ret

EEL 4744

26
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

� Two levels of nested subroutine calls; think about the stack

Main-Subroutine (Nesting)

Main Program
; Be sure to init stack

rcall SUBRA
dec -----

SUBRB: push r16

pop r16
ret

Subroutine BSUBRA: add -----

ret

Subroutine A

rcall SUBRB
inc r16

25

26

14

23-Jan-26—9:21 AM

University of Florida, EEL 4744 – File 08
© Drs. Schwartz & Arroyo

Data Structures, Program Structures

EEL 4744

27
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

CALL and RCALL on
XMEGA

• With the XMEGA, both RCALL and CALL store
3-bytes (not 2-bytes) onto the stack

• The most significant byte for our processor is
ALWAYS 0x00 because we are limited to 128k
(shift right 1-bit  64k)

• RCALL take 2-bytes (1 word) of program memory
>Can go -2048 to 2047 addresses from the next address

• CALL takes 4-bytes (2 words) of program memory
>Can go anywhere in the addressable space (even for

larger XMEGAs)

EEL 4744

28
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

Subroutine Control
Instructions for XMEGA

• rcall (Relative Call to Subroutine)
> General format: rcall LABEL (or address) [assembler calculates offset]
> Addressing Mode: PC Relative (−2048 ≤ offset ≤ 2047)
> Description: (PC) ← (PC) + 1; ((SP)) ← (PCL); (SP) ← (SP) − 1;

((SP)) ← (PCM); (SP) ← (SP) − 1; ((SP)) ← (PCH);
(SP) ← (SP) − 1; PC ← PC + offset

• call (Call Subroutine)
> General format: call LABEL (or address)
> Addressing Mode: Extended
> Description: (PC) ← (PC) + 2; ((SP)) ← (PCL); (SP) ← (SP) − 1;

((SP)) ← (PCM); (SP) ← (SP) − 1; ((SP)) ← (PCH);
(SP) ← (SP) − 1; PC ← addr

• ret (Return from Subroutine)
> General format: ret
> Addressing Mode: Inherent
> Description: (SP)←(SP)+1; (PCH)←((SP));

(SP)←(SP)+1; (PCM)←((SP));
(SP)←(SP)+1; (PCL)←((SP));

PC is 22-bits
PC = PCH | PCM | PCL

27

28

15

23-Jan-26—9:21 AM

University of Florida, EEL 4744 – File 08
© Drs. Schwartz & Arroyo

Data Structures, Program Structures

EEL 4744

29
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

XMEGA Stack Example
with Subroutine

• See example on website: Stack1.asm
>View code and simulate

– Watch stack, stack pointer (SP) Stack1.asm

EEL 4744

30
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

Example (Add two Vectors)
void Add_Vectors(int a[3], int b[3], int result[3]);
int main(void)
{

int A[3] = {1, 2, 3};
int B[3] = {0xA0, 0xB0, 0xC0};
int C[3];
Add_Vectors(A, B, C);

}
void Add_Vectors(int a[3], int b[3], int result[3])
{

int i;
for(i=0; i<3; i++)
{

result[i] = a[i] + b[i];
}

}

29

30

16

23-Jan-26—9:21 AM

University of Florida, EEL 4744 – File 08
© Drs. Schwartz & Arroyo

Data Structures, Program Structures

EEL 4744

31
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

ASM Example:
Description (for XMEGA)

**
* Calls a subroutine, VectorADD, that adds two
* contiguous N-element vectors to form the
* resulting vector, VC = VA + VB. The
* subroutine inputs and outputs are below.
* Inputs: Z = address of the first vector (VA)
* r16 = N, the number of elements
* Z+N is address of the 2nd vector (VB)
* X = address of resulting vector sum
* Outputs: Table pointed to by X (VC)
**

VectorAdd.asm

VectorAdd.asm

EEL 4744

32
University of Florida, EEL 4744 – File 08

© Drs. Schwartz & Arroyo

The End!

31

32

