23-Jan-26—9:21 AM Data Structures, Program Structures

P Y EEL 4744

EEL 4744C: 1P Apps

Today’s Menu m
Today’s Class ..

2

* Program File Structure Cx
* Data Structures
* Program Structures
>Sequence, Selection, Repetition
* Transition from a “main” program to a “subroutine”
* Subroutine to add vectors

&

Stackl.asm, VectAdd.asm,
doc8331, doc0856

P EEL 4744

EEL 4744C: 1P Apps

Data Structures

* Bit Fields

* Floating Point
* Sequential List
» Matrix

* Linked List

« Stack

University of Florida, EEL 4744 — File 08
© Drs. Schwartz & Arroyo 1

23-Jan-26—9:21 AM Data Structures, Program Structures

Pl EEL 4744
. Data Structures: Bit Fields &
Floating Point

71 6| 5|14 3|2]1]0

8-bit Exponent 24-bit Mantissa

Pl EEL 4744
. Data Structures: Sequential List

* A sequential list of data is a collection of data mapped into
successive locations in storage, starting at some initial
location called the base address. The order of the elements
may or may not have a particular significance.

Time | Experimental Data Location

Internal
Format

n Memory
Al lled
BN YT

University of Florida, EEL 4744 — File 08
© Drs. Schwartz & Arroyo 2

23-Jan-26—9:21 AM Data Structures, Program Structures

Pl EEL 4744
N Data Structures: Matrix

Memory

Location

A 322

A is an m row by n column matrix
a; = element in row i column |
Location of a; = A+(i-1)*n+(j-1)

] EEL 4744 Data Structures: Linked List

Memory
NAME: ASCII

* Before Insertion

3A Pointer: TITLE

3B
3C

TITLE POINTER 3D
3E

NAME POINTER

SALARY | NULL

6

University of Florida, EEL 4744 — File 08
© Drs. Schwartz & Arroyo 3

23-Jan-26—9:21 AM Data Structures, Program Structures

FRRd EEL 4744 Data Structures: Linked List
1 Memory

37 NAME: ASCII

) 38
* After Insertion 39

A Pointer: DEGREE

3
NAME POINTER 3
DEGREE POINTER
TITLE POINTER

SALARY | NULL

46 (L5190 | Pointer: TITLE

P EEL 4744

Data Structures: Stack
(XMEGA Format)

* Before pushing a Sth item | * After pushing a 5th item
Location Memory L

SP 2FFA
2FFB TOP 2FFB

2FFC 2FFC

2FFD 2FFD

2FFE 2FFE

2FFF 2FFF

. Memor
[Location Y

University of Florida, EEL 4744 — File 08 4
© Drs. Schwartz & Arroyo

23-Jan-26—9:21 AM Data Structures, Program Structures

E 10 | EEL 4744
Data Structures: Stack
(6812 Format)

* Before pushing a Sthitem | * After pushing a 5th item
Memory Memory

Location
120

Location

TOP

BASE 125

Fi g EEL 4744
Data Structures: Stack
(F2833x DSC Format)

* Before pushing a 5th item * After pushing a 5th item
Memory Memory

[ocation Location
BASE 400 - BASE 400

401
402
403
404

10
University of Florida, EEL 4744 — File 08
© Drs. Schwartz & Arroyo 5

23-Jan-26—9:21 AM Data Structures, Program Structures

Pl EEL 4744 doc0856
Stack PUSH/POP

XMEGA

* Data is pushed and popped from the stack using PUSH
(decreases SP) and POP (increases SP)

Rr Push Register on Stack STACK <« Rr

Rd Pop Register from Stack Rd < STACK

bl EEL 4744 doc8331

Section 3.8

Mo Stack on the XMEGA

» Stack Pointer (SP) is two 8-bit registers to form a
16-bit register
>Reference them with CPU_SPL and CPU_SPH

— SPL is at 0xOD and SPH is at 0xOE (although we never
reference them directly by address)

* SP is initialized at reset to the highest address of

the internal SRAM (0x3FFF for our chip)
>But in 4744, assume that it is UN-initialized

* SP MUST be initialized before any subroutines or
interrupts are used
» Stack grows from a higher memory addresses to a
__lower memory addresses

Arroyo

12

University of Florida, EEL 4744 — File 08
© Drs. Schwartz & Arroyo 6

23-Jan-26—9:21 AM Data Structures, Program Structures

) | EEL 4744
— Stack Initialization on XMEGA

* The stack pointer has only 16 bits and can only

address the low 64k of data space (0 - OXFFFF)
> After reset, SP points to address 0x3FFF, but do NOT
assume this, i.e., always initialize the stack!

Example:
.EQU STACK ADDR = 0x3FFF

Idi r16, low(STACK ADDR)
out CPU _SPL, r16 ;initialize low byte of stack pointer
Idi r16, high(STACK ADDR)
out CPU SPH, r16 ;initialize high byte of stack pointer

ile 08

Py EEL 4744

EEL 4744C: 1P Apps

Program Structures and
Structured Programming

* Do not use tricks to shorten code.
> Tricks will “byte” you later!

* Program Structures
> Sequence
> Selection (IF-THEN-ELSE)
> Repetition (FOR, WHILE, REPEAT-UNTIL)

> Main-Subroutine

14

University of Florida, EEL 4744 — File 08
© Drs. Schwartz & Arroyo 7

23-Jan-26—9:21 AM Data Structures, Program Structures

E 10 | EEL 4744
i . S equenCG

r16, OxF ;Instruction 1

PORTQ DIR, r16
;Instruction 2

;Instruction N

doc0856

XMEGA Branch Instruction

* The syntax for a branch instruction is as follows:
BRxxx Label

>Label is assembled as a 7-bit (2’s comp) signed
constant
— Values between 63 and -64
* PC calculations
>If (COND = true) PC = PC + 1+ signed 7-bit offset
>1f (COND = false) PC =PC + 1
>If (COND = true) then instruction takes 2 cycles.
>If (COND = false) then instruction takes 1 cycles.

* Note that there are signed, unsigned, and simple
branc

16

University of Florida, EEL 4744 — File 08
© Drs. Schwartz & Arroyo 8

23-Jan-26—9:21 AM

XMEGA
Branch

Signed

doc8331
Section 35

doc0856

Data Structures, Program Structures

Branch if Status Flag Set
Branch if Status Flag Cleared
Branch if Equal

Branch if Not Equal

Branch if Carry Set

Branch if Carry Cleared
Branch if Same or Higher
Branch if Lower

Branch if Minus

Branch if Plus

Branch if Greater or Equal, Signed

Branch if Less Than, Signed

Branch if Half Carry Flag Set
Branch if Half Carry Flag Cleared
Branch if T Flag Set

Branch if T Flag Cleared

Branch if Overflow Flag is Set
Branch if Overflow Flag is Cleared
Branch if Interrupt Enabled

Branch if Interrupt Disabled

if (SREG(s) = 1) then PC
if (SREG(s) = 0) then PC
if (Z= 1) then PC

if (Z = 0) then PC

if (C = 1) then PC

if (C = 0) then PC

if (C = 0) then PC

if (C = 1) then PC

if (N = 1) then PC

if (N = 0) then PC

if (N @ V= 0) then PC

if (N @ V= 1) then PC

if (H = 1) then PC

if (H = 0) then PC

if (T = 1) then PC

if (T = 0) then PC

if (V = 1) then PC

if (V = 0) then PG

if (I = 1) then PG

if (I = 0) then PC

PC+k+1

PC+k+1

PC+k+1

PC+k+1

PC+k+1

PC+k+1

PC+k+1

PC+k+1

PC+k+1

PC+k+1

PC+k+1

PC+k+1

PC+k+1

PC+k+1

PC+k+1

PC+k+1

PC+k+1

PC+k+1

PC+k+1

PC+k+1

” . .
gy EEL 4744 XMEGA Conditional
EEL 4744C: 1P Apps
From old version of doc0856 BranCh Sumlnary
(not in new version)
Test Boolean Mnemonic Complementary Boolean Mnemonic Comment
Rd > Rr Zo(N& V) =0 BRLT!" Rd <Rr Z+(N& V) =1 BRGE" Signed
Rd >Rr (N&V)=0 BRGE Rd <Rr NeV)=1 BRLT Signed
Rd =Rr Z=1 BREQ Rd = Rr Z=0 BRNE Signed
Rd <Rr Z+(Ne V) =1 BRGE™ Rd > Rr Ze(N® V) =0 BRLT* Signed
Rd < Rr (NeV)=1 BRLT Rd > Rr (N&V)=0 BRGE Signed
Rd > Rr C+Z=0 BRLO'™ Rd < Rr C+Z= BRSH" Unsigned
Rd > Rr C=0 BRSH/BRCC Rd < Rr C=1 BRLO/BRCS Unsigned
Rd =Rr Z=1 BREQ Rd = Rr Z=0 BRNE Unsigned
Rd < Rr C+Z=1 BRSH™ Rd > Rr C+Z=0 BRLO* Unsigned
Rd <Rr C=1 BRLO/BRCS Rd = Rr C=0 BRSH/BRCC Unsigned
Carry C=1 BRCS No carry C=0 BRCC Simple
Negative N=1 BRMI Positive N=0 BRPL Simple
Overflow V=1 BRVS No overflow V=0 BRVC Simple
Zero Z=1 BREQ Not zero Z=0 BRNE Simple
Note: 1. Interchange Rd and Rr in the operation before the test, i.e., CP Rd,Rr — CP Rr,Rd

University of Florida, EEL 4744 — File 08
© Drs. Schwartz & Arroyo

18

University of Florida, EEL 4744 — File 08
© Drs. Schwartz & Arroyo 9

23-Jan-26—9:21 AM Data Structures, Program Structures

P EEL 4744
[F-THEN-ELSE Selection

IF-THEN-ELSE

1di rl6, N1
Idi rl7, N2
cp rl6, r17 ;Condition is N1-N2=0
breq LY ;IF condition is TRUE,
& ; THEN branch to LY,
LX: {Inst. 2} ;ELSE branch to here(LX)
rjmp LZ
LY: {Inst. 1}

LZ: {Inst. 3}
*

*

FOR Repetition

1di rl6, 101 ;Initialization (don’t change Z flag)
ori rl6, 0 ; This used to change Z flag
breq LY ;The block of instructions of
LX: {BODY} ; BODY are executed
; repeatedly, starting
; with (r16) equal to 101 and
; continuing until (r16) is 0
rl6 ;In this case, the condition is
|9, ¢ ; 116=0
{Inst. N}
%
%

University of Florida, EEL 4744 — File 08 1 O
© Drs. Schwartz & Arroyo

23-Jan-26—9:21 AM

FiY EEL 4744

EEL 4744C: 1P Apps

Data Structures, Program Structures

WHILE Repetition

E3

Idi rl6, N1

LX:cp

rl6, r17 ; Condition is N1-r17=0

brme LY : The block of instructions of
{BODY} ;: BODY are executed

; repeatedly, WHILE the

; condition (C) is satisfied

; N1-r17=0 must be eventually
; satisfied

gmp LX

LY: {Inst. N}

Fid EEL 4744

EEL 4744C: 1P Apps

REPEAT-UNTIL

cp

*

*

REPEAT-UNTIL Repetition

:The block of instructions of
; BODY are executed repeatedly
; UNTIL the condition(C) is
; satisfied.
rl6,r17 ; Condition is r16-r17=0

breq LY
rgmp LX
{Inst. N}

*

%

University of Florida, EEL 4744 — File 08

© Drs. Schwartz & Arroyo

11

23-Jan-26—9:21 AM Data Structures, Program Structures

bl EEL 4744 doc8331
® Stack on the XMEGA

Section 3.8

* During subroutine calls and interrupts, the return

address is automatically pushed on the stack
>The return address (for our chip) is 3 bytes [you
should try it and verify], and hence the stack pointer is
decremented/incremented by three
>The return address is popped off the stack when

returning from each of the following:
— Return from subroutines with the RET instruction
— Return from interrupts with the RETI instruction

1) EEL 4744
- RCALL/CALL, RET/RETI,
and Stack on XMEGA

* Use CALL (or RCALL) instruction to call subroutine
» Use RET instruction to return from subroutine calls
* Use RETI instruction to return from interrupts ;,.0356

RCALL k Relative Call Subroutine PC < PC +k +1 3/4
CALL k Call Subroutine PC <k 4/5
RET None Subroutine Return PC « STACK 4/5
RETI None Interrupt Return PC < STACK 4/5

ida, EEL 4744 — File 08
hwartz & Aroyo

University of Florida, EEL 4744 — File 08
© Drs. Schwartz & Arroyo 1 2

23-Jan-26—9:21 AM Data Structures, Program Structures

1EEL 4744
Main-Subroutine

0 A program which calls two subroutines; think about the stack

Main Program Subroutine A

SUBRA: add

Subroutine B
SUBRB: push

pop rl6

1 EEL 4744
Main-Subroutine (Nesting)

0 Two levels of nested subroutine calls; think about the stack

Main Program

Subroutine B

SUBRB: pushrl6

pop rl6

ret

University of Florida, EEL 4744 — File 08
© Drs. Schwartz & Arroyo 1 3

23-Jan-26—9:21 AM Data Structures, Program Structures

Py EEL 4744 CALL and RCALL on
— XMEGA

* With the XMEGA, both RCALL and CALL store
3-bytes (not 2-bytes) onto the stack

* The most significant byte for our processor is
ALWAYS 0x00 because we are limited to 128k
(shift right 1-bit =» 64k)

*« RCALL take 2-bytes (1 word) of program memory
>Can go -2048 to 2047 addresses from the next address
* CALL takes 4-bytes (2 words) of program memory

>(Can go anywhere in the addressable space (even for
larger XMEGASs)

E 4 EEL 4744 Subroutine Control
- Instructions for XMEGA

* rcall (Relative Call to Subroutine)
> General format: rcall LABEL (or address) [assembler calculates offset]
> Addressing Mode: PC Relative (—2048 < offset < 2047)
> Description: (PC) « (PC)+1; ((SP)) « (PC.); (SP)« (SP)-1;
((SP)) < (PC); (SP) <= (SP)~ 1; ((SP)) ¢~ (PCy);
(SP) « (SP)—1; PC « PC + offset

« call (Call Subroutine) PC is 22-bits
> General format: call LABEL (or address) PC =PC,, | PC,, | PC
> Addressing Mode: Extended L i L

> Description: (PC) «~ (PC) +2; ((SP)) <~ (PC)); (SP)« (SP)—1;
((SP)) « (PCy); (SP) < (SP)— 1; ((SP)) & (PCy);
(SP) <~ (SP) — 1; PC <« addr

* ret (Return from Subroutine)

> General format: ret

> Addressing Mode: Inherent

> Description: (SP)«—(SP)+1; (PCy)<((SP));
(SP)«—(SP)+1; (PCy)<((SP));
(SP)«<—(SP)+1; (PC,)«((SP));

University of Florida, EEL 4744 — File 08 4
© Drs. Schwartz & Arroyo 1

23-Jan-26—9:21 AM Data Structures, Program Structures

§4 EEL 4744 XMEGA Stack Example
with Subroutine

* See example on website: Stackl.asm

>View code and simulate

— Watch stack, stack pointer (SP) S tackl rasm

, EEL 4744 — File 08
Arroyo

Pl EEL 4744
g Example (Add two Vectors)

void Add Vectors (int a[3], int b[3], int result([3]);
int main (void)
{
int A[3] {1, 2, 3};
int B[3] {oxno0, 0xB0O, 0xCO};
int CI[3];
Add Vectors (A, B, C);
}

void Add Vectors (int al[3], int b[3], int result[3])

{
int 1i;
for (i=0; 1<3; i++)
{

result [i]

4744 — File 08
Arroyo

University of Florida, EEL 4744 — File 08
© Drs. Schwartz & Arroyo 1 5

23-Jan-26—9:21 AM Data Structures, Program Structures

Y
‘;?

EEL 4744C: 1P Apps

= 4744 ASM Example:

VectofAdd.asm D escrlptlon (for XMEGA)

>k ok 2 sk o s sk sk ok s sk s sk sk sk ok s sk s sk sk sk sk s sk s sk sk sk sk s sk s sk sk sk ok s sk s skeosk skok skok

* Calls a subroutine, VectorADD, that adds two
* contiguous N-element vectors to form the

* resulting vector, VC = VA + VB. The

* subroutine inputs and outputs are below.

* Inputs: Z = address of the first vector (VA)

g r16 = N, the number of elements

g Z+N is address of the 2nd vector (VB)

* X = address of resulting vector sum

* Outputs: Table pointed to by X (VC)

sk ok 2 sk s s sk sk ok s sk s sk sk sk sk s sk s sk sk sk sk s sk s sk sk sk sk s sk s sk sk sk sk ook sk skeosk ko skok

VectorAdd.asm

EL 4744 - File 08
rroyo.

Pid EEL 4744

EEL 4744C: 1P Apps

The End!

University of Florida, EEL 4744 — File 08
© Drs. Schwartz & Arroyo 1 6

